30 research outputs found

    Noise properties in the ideal Kirchhoff-Law-Johnson-Noise secure communication system

    Get PDF
    In this paper we determine the noise properties needed for unconditional security for the ideal Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution system using simple statistical analysis. It has already been shown using physical laws that resistors and Johnson-like noise sources provide unconditional security. However real implementations use artificial noise generators, therefore it is a question if other kind of noise sources and resistor values could be used as well. We answer this question and in the same time we provide a theoretical basis to analyze real systems as well

    Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with Johnson-like noise

    Full text link
    First, we show a new inexpensive defense against intruders and the man-in-the-middle attack in the Kirchhoff's-loop-Johnson-like-noise (KLJN) cipher. Then instead of point-to-point communication, we propose a high efficiency, secure network. The (in the idealistic case totally secure) classical network is based on an improved version of the KLJN cipher. The network consists of two parallel networks: i) a chain-like network of securely communicating, electrically isolated Kirchhoff-loops with Johnson-like noise and driven by a specific switching process of the resistances; ii) and a regular non-secure data network with a Coordinator-server. If the classical network is fast enough, the chain-like network of N communicators can generate and share an N bit long secret key within a single clock period of the ciphers and that implies a significant speed-up compared to the point-to-point key exchanges used by quantum communication or RSA-like key exchange methods. This is a teleportation-type multiple telecloning of the classical information bit because the information transfer can take place without the actual presence of the information bit at the intermediate points of the network. With similar quantum schemes the telecloning of classical bits via quantum communicator networks without telecloning the quantum states is also possible.Comment: Quantum-based network application added. 13 page

    What kind of noise guarantees security for the Kirchhoff-Loop-Johnson-Noise key exchange?

    Get PDF
    This article is a supplement to our recent one about the analysis of the noise properties in the Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system [Gingl and Mingesz, PLOS ONE 9 (2014) e96109, doi:10.1371/journal.pone.0096109]. Here we use purely mathematical statistical derivations to prove that only normal distribution with special scaling can guarantee security. Our results are in agreement with earlier physical assumptions [Kish, Phys. Lett. A 352 (2006) 178-182, doi: 10.1016/j.physleta.2005.11.062]. Furthermore, we have carried out numerical simulations to show that the communication is clearly unsecure for improper selection of the noise properties. Protection against attacks using time and correlation analysis is not considered in this paper

    Power spectral density estimation for wireless fluctuation enhanced gas sensor nodes

    Get PDF
    Fluctuation enhanced sensing (FES) is a promising method to improve the selectivity and sensitivity of semiconductor and nanotechnology gas sensors. Most measurement setups include high cost signal conditioning and data acquisition units as well as intensive data processing. However, there are attempts to reduce the cost and energy consumption of the hardware and to find efficient processing methods for low cost wireless solutions. In our paper we propose highly efficient signal processing methods to analyze the power spectral density of fluctuations. These support the development of ultra-low-power intelligent fluctuation enhanced wireless sensor nodes while several further applications are also possible

    Efficient Sound Card Based Experimention At Different Levels Of Natural Science Education

    Get PDF
    Sound cards, which count as standard equipment in today's computers, can be turned into measurement tools, making experimentation very efficient and cheap. The chief difficulties to overcome are the lack of proper hardware interfacing and processing software. Sound-card experimentation becomes really viable only if we demonstrate how to connect different sensors to the sound card and provide suitable open-source software to support the experiments. In our talk, we shall present a few applications of sound cards in measurements: photogates, stopwatches and an example of temperature measurement and registration. We also provide the software for these applications.Comment: MPTL-HSCI 2011 Joint conference, 15-17 September 2011, Ljubljana, Sloveni

    Current and voltage based bit errors and their combined mitigation for the Kirchhoff-law-Johnson-noise secure key exchange

    Get PDF
    We classify and analyze bit errors in the current measurement mode of the Kirchhoff-law-Johnson-noise (KLJN) key distribution. The error probability decays exponentially with increasing bit exchange period and fixed bandwidth, which is similar to the error probability decay in the voltage measurement mode. We also analyze the combination of voltage and current modes for error removal. In this combination method, the error probability is still an exponential function that decays with the duration of the bit exchange period, but it has superior fidelity to the former schemes.Comment: 9 pages, accepted for publication in Journal of Computational Electronic

    How accurate is an Arduino Ohmmeter?

    Get PDF
    The Arduino platform is widely used in education of physics to perform a number of different measurements. Teachers and students can build their own instruments using various sensors, the analogue-to-digital converter of the Arduino board and code to calculate and display the result. In several cases this can mean incautious reproduction of what can be found on the Internet and an in-depth understanding can be missing. Here we thoroughly analyse a frequently used resistance measurement method and show demonstration experiments as well to make it clear

    Enhanced control of excimer laser pulse timing using tunable additive noise

    Full text link
    Recently we have shown a system developed to precisely control the laser pulse timing of excimer lasers [1]. The electronic circuit based on an embedded microcontroller and utilized the natural jitter noise of the laser pulse generation to improve the long term regulation of the delay of the laser related to an external trigger pulse. Based on our results we have developed an improved system that uses additional, programmable time delay units to tune the noise source to further enhance performance and allows reduction of complexity in the same time. A mixed-signal microcontroller generates a randomly dithered delay of the pulse generation moment to enhance the resolution and also runs a dedicated algorithm to optimize regulation. The compact, flexible hardware supports further enhancements; the signal processing algorithm can be replaced even by in-system reprogramming. Optimized processing and the relaxed hardware requirements may also support low-power operation, wireless communication, therefore the application possibilities may be extended to many other disciplines.Comment: Paper from Workshop on Fluctuations and coherence: from superfluids to living systems, Lancaster, 13-16 July 201
    corecore